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substituted benzenes and the b2g(7T3*) orbital of benzene.3b For 
each of the molecules studied, the third electron affinity lies 
between —4.45 and —5.12 eV. The relative positions are in 
accord with our earlier discussion of inductive and resonance 
effects. 

To provide an overview of the effects of substitution on the 
unfilled as well as filled orbitals, we present in Figure 2 a cor­
relation diagram of the anion and cation states. For the latter, 
the splitting of the eig(7r) orbital of benzene into the bi(ir) and 
a2(ir) orbitals has been the subject of several investigations17 

employing photoelectron spectroscopy. We have not indicated 
the positions of the third x ionization potentials since, for some 
of the substituted benzenes, the assignment is still open to 
question. 

These studies indicate that ETS provides a complement to 
photoelectron spectroscopy in yielding information about the 
shifts of levels due to substituent effects. Although the shifts 
in anion energies can be interpreted in terms of the same con­
cepts invoked for cation states, the variations in anion lifetime 
are poorly understood and warrant further investigation. 

Acknowledgment. We acknowledge support from the donors 
of the Petroleum Research Fund, administered by the Amer­
ican Chemical Society. 

References and Notes 
(1) K. D. Jordan, J. A. Michejda, and P. D. Burrow, J. Am. Chem. Soc., 98, 1295 

(1976). 
(2) The sign of the electron affinity is taken by convention to be negative for 

an unstable anion. 
(3) (a) L. Sanche and G. J. Schulz, Phys. Rev. A, 5, 1672 (1972); (b) J. Chem. 

Phys., 58, 479 (1973); (c) I. Nennerand G. J. Schulz, ibid., 62, 1747 (1975). 
These references contain a detailed discussion of electron transmission 
spectroscopy. 

(4) P. D. Burrow and K. D. Jordan, Chem. Phys. Lett., 36, 594 (1975). 
(5) These spectra are acquired by passing a high resolution electron beam 

through a cell containing gas at sufficient density to scatter approximately 

Interactions among molecular species clearly form one 
of the dominant and most pervasive preoccupations of chem­
ists. However, not only the making and breaking of chemical 
bonds, but the effect of the environment on the physical and 
chemical properties of nonreactive systems, where lesser 
magnitude forces typically are involved, requires a detailed 
description of intramolecular interactions. Hence, the desir-

60% of the electron beam. The unscattered, or transmitted, portion of the 
beam, which is collected, is related to the total scattering cross section. 
To enhance the visibility of sharp variations in the scattering cross section, 
the derivative of the transmitted current with respect to energy is plotted 
as a function of the electron impact energy. 

(6) M. J. W. Boness, I. W. Larkin, J. B. Hasted, and L. Moore, Chem. Phys. Lett., 
1,292(1967). 

(7) For a discussion concerning the identification of this state, seeS. F. Wong 
and G. J. Schulz, Phys. Rev. Lett., 35, 1429 (1975). 

(8) We Infer from the characteristics of the spectra and our Instrumental energy 
resolution that the lifetimes of the anions studied here correspond to 
spreads in energy in excess of 0.04 eV. 

(9) We label the orbitals of the substituted benzenes according to the C2v point 
group. 

(10) S. Ehrenson, R. T. C. Brownlee, and R. W. Taft, Prog. Phys. Org. Chem., 
10, 1 (1973). 

(11) The SCF-MO calculations were performed using the GAUSSIAN 70 program 
(available as QGPE program 236 from Indiana University) of W. J. Hehre, 
W. A. Lathan, R. Ditchfield, M. D. Newton, and J. A. Pople. The calculations 
were of the STO-3G variety. Splittings between the a2(7r') and bi(7r*) or­
bitals of 0.39 and 0.25 eV for phenol and fluorobenzene, respectively, were 
obtained. 

(12) The vibrational spacing of the ground state anions of C6H5OH, C6H5OCH3, 
C6H5NH2, C6H5F, C6H5CI, and C6H5Br is 120, 125, 120, 115, 125,and~125 
meV, respectively. Of the modes which are energetically possible, we favor 
the a2(i/i7a) ring puckering vibration. The excitation of this mode is con­
sistent with the charge distribution of the a2(7r") orbital. 

(13) The existence of temporary anion states in benzene and certain of its de­
rivatives was first inferred by R. N. Compton, L. G. Christophorou, and R. 
H. Huebner, Phys. Lett., 23, 656 (1966), using the SF6 electron scavenger 
technique. The splitting of the degenerate benzene anion states under 
substitution was studied by L. G. Christophorou, D. L. McCorkle, and J. G. 
Carter, J. Chem. Phys., 60, 3779 (1974), using the trapped electron method. 
Neither of these techniques is sensitive to sharp structure in the scattering 
cross section and thus only a rather crude bound on the EA's can be de­
termined in general. Furthermore, signals arising from direct vibrational 
excitation may also be present. The results described in the latter reference 
are not in good agreement with those of the present work nor are they 
consistent with known resonance and induction effects. 

(14) I. Nenner and G. J. Schulz reported only a bound for the EA of C6H5F of 
> -1 .0eV. 

(15) In C6H5F, the onset for this process is about 1.55 eV. 
(16) L. G. Christophorou, R. N. Compton, G. S. Hurst, and P. W. Reinhardt, J. 

Chem. Phys., 45, 536 (1966). 
(17) D. W. Turner, C. Baker, A. D. Baker, and C. R. Brundle, "Molecular Pho­

toelectron Spectroscopy", Wiley-lnterscience, New York, N.Y., 1970, and 
references cited therein. 

ability of developing general approaches that will allow dis­
cussion of the various possible intermolecular interactions is 
self-evident. 

In spite of the obvious need for such capabilities, previous 
approaches to the problem1-23 have typically required serious 
approximations to be made, either in the model itself or in the 
techniques used to evaluate the model, so that computational 
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tractability of the procedure is obtained. The current work 
formulates an approach that employs ab initio quantum me­
chanics, either directly or by the use of wave functions and 
concepts derived from ab initio studies, in order to evaluate 
more accurately some of the various interactions that might 
be expected. 

In the following sections, the various kinds of interactions 
that might be expected between a molecule and its environment 
are discussed, using solute-solvent interactions as the partic­
ular vehicle for the discussion. The formulation of a quantum 
mechanical approach for evaluating one of the important types 
of interactions, i.e., electrostatic interactions between the solute 
and bulk solvent, is given within the framework of Hartree-
Fock theory and using wave functions derived therefrom. 
Applications to several prototype systems are also described, 
which allow assessment of the assets and deficiencies of the 
approach, and the size and nature of systems to which it may 
be applicable. 

General Description of Solute-Solvent Interactions 
When considering the possible interactions between a solute 

molecule and the surrounding solvent, two qualitatively dif­
ferent kinds of interactions can be identified. The first of these, 
which represents interactions that occur at relatively short 
distances in the vicinity of the solute, will be referred to as 
"microscopic" interactions. The other type of interactions, 
which will be referred to as "macroscopic" interactions, con­
sists of longer range interactions and can be thought of as the 
interactions between the solute and the bulk solvent, the latter 
of which may be treated as a continuum instead of discrete 
molecules. Using this approach, one must identify the nature 
of both the microscopic and macroscopic interactions and 
develop criteria for determining where microscopic interactions 
can be legitimately replaced by macroscopic interactions. 

At the microscopic level, where the solute and each solvent 
molecule is treated explicitly, several kinds of interactions can 
be identified. These include electrostatic, polarization, charge 
transfer, exchange polarization, and correlation effects. Of 
these, the use of Hartree-Fock theory2425 with a suitably 
flexible basis set allows calculation of electrostatic and po­
larization effects simply by examining the individual solute and 
solvent molecules in the presence of each other. If, in addition, 
the system of solute and solvent molecules is treated as a "su-
permolecule", where the molecular orbitals are allowed to be 
delocalized over the entire system of solute and solvent mole­
cules, then charge transfer and exchange polarization effects 
can also be included. An approach which utilizes the properties 
of spherical Gaussian basis orbitals for the description of these 
effects is described in the following paper. Of course, corre­
lation effects require the introduction of configuration inter­
action or equivalent techniques, which are not treated in the 
current studies. 

In the case of macroscopic interactions, we shall consider 
the possible interactions between a solute molecule and a sol­
vent, the latter of which is considered to consist of a continuous, 
polarizable dielectric having macroscopic characteristics, e.g., 
a dielectric constant. Among the interactions that can be ex­
pected to be of importance in this category are electrostatic 
interactions, cavity energy, solvent relaxation effects, and 
short-range repulsive and dispersion forces.1-5 Electrostatic 
interactions arise from the polarization of the dielectric by the 
solute, resulting subsequently in a "reaction field" which acts 
back upon the solute. The cavity energy arises because the 
volume occupied by the discrete solute molecule (or solute plus 
several discrete solvent molecules) needs to be excluded from 
the macroscopic dielectric and the cavity energy is that which 
is required to create such a cavity within the continuous di­
electric. Solvent relaxation terms arise from the tendency of 
the dielectric to relax in time from its polarized form, while 

Figure 1. Depiction of the classical electrostatic model of Kirkwood. 

short-range repulsive effects are those encountered by the 
electrons of the molecules inside the cavity as they reach the 
outer edge. 

The current studies are focussed toward formulation and 
application of ab initio quantum techniques for examining 
electrostatic interactions, both macroscopic and microscopic. 
The discussion in this paper and the next describes a formu­
lation and application of ab initio techniques to several aspects 
of these effects, using floating spherical Gaussian orbitals26 

(FSGO) as the basis set. Particular attention is given to the 
desirability for applicability to large molecular systems. 

Macroscopic Electrostatic Interactions 
The method developed here27 starts from a classical model 

due to Kirkwood2 to deduce an appropriate quantum me­
chanical operator for description of the electrostatic potential 
due to the bulk solvent which affects a solute molecule.28 

The classical model is one in which the solvent is described 
as a polarizable dielectric continuum, characterized by its static 
dielectric constant t. The solute molecule is represented by M 
point charges (e,), situated at fixed points (r,) inside a sphere 
of radius "a" (see Figure 1). By solving the appropriate elec­
trostatic equations inside and outside the sphere and applying 
the boundary conditions that are needed, Kirkwood found 

K 1 ( D - S 1 - ^ 7 + E (*) 
k=\ |r - TkI k~\\a/ 

where V\ (r) is the potential at any point inside the sphere. The 
first set of terms arises from the point charges inside the sphere 
and the second set of terms arises because the point charges 
polarize the dielectric external to the sphere, and this polarized 
dielectric creates an additional contribution to the total po­
tential inside the sphere. 

To obtain the potential energy (U) due to the interaction of 
the solute molecule and solvent medium, one forms 

U=y2Sp{T)V(r)dt (2) 

where p(r) is the charge distribution of the molecule and V(r) 
is the potential describing the interaction. In the classical model 
of Kirkwood, the charge distribution is represented by 

M 

P(J) - L ejb{x - TJ) (3) 

and the appropriate potential V(r) is the second set of terms 
in V\ (r) in eq 1. Evaluation of eq 2 then gives 
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M 
U=V2Z ejV{Tj) (4) 

7=1 

or 

where ^ is the angle between r,- and r*. Note that the sums 
overy and k both extend over all particles. 

In order to convert the above exact classical expression into 
a corresponding quantum mechanial operator, one replaces 
the classical point charge distribution by the corresponding 
quantum mechanical charge distribution. This has the effect 
in eq 5 of simply changing Tj, r*, and $,* from fixed quantities 
to variables, resulting in the conversion of U into a quantum 
mechanical operator, 1U. Using atomic units,29 Il can then be 
written in more familiar form as a sum of nuclear-nuclear, 
nuclear-electron, and electron-electron terms, i.e., 

f 1-(Z+I)(I - Q - l m 

/to L (l+l)e + l J W 

X \~£zaZ0 (%&)'P1 (cos ^ ) 

PS /P r \ l 

-EZZa p £ ) P1 (COS Ki) 
a i V a1 I 

4 g ft?)'^001M (6) 

or 
%l=±U, (7) 

;=o 
In eq 6, P nuclei and S electrons have been assumed, with the 
nuclear positions (Ra, R#) assumed to be fixed. 

Considering several terms in V explicitly, the terms in %IQ 
can be written as 

% = -'/2 (62AO(I - ( l / o ) (8) 
where Q is the net charge on the solute molecule. This is simply 
the Born charging term and vanishes for neutral molecules. 

The terms corresponding to / = 1 can be written as 

«•-4 [ ^ ] G) 
where n2 is the square of the dipole operator, 

^ = £ ZaRa - Z r, (10) 
a i 

If n is taken as the sum of the permanent dipole moment and 
an induced moment and the operator nature of n2 is ignored, 
then the reaction field model due to point dipoles derived by 
Onsager3 is obtained. 

The model represented by eq 6 is seen to have several im­
portant attributes not possessed in previous models. In par­
ticular, the model is one in which all multipole terms of the 
reaction field are included, and the model is not limited to 
monopole and/or dipole terms. Second, the use of an operator 
instead of the corresponding classical quantities allows non-
classical (i.e., quantum mechanical) effects to be included in 
the treatment. 

Finally, this formulation includes electrostatic macroscopic 
solvent terms in the Hamiltonian, with concomitant effect on 
the wave function, instead of applying a solvent effect cor­
rection to the free molecule charge distribution.2 

In the treatment of the classical model, it is assumed that 
all point charges will be confined within the sphere of radius 

"a". However, it is convenient computationally, if not essential, 
for the wave function that is determined to extend everywhere, 
at least in principle. This computational need contradicts not 
only the classical model, but also the actual situation in a liquid, 
where the electrons of a particular molecule are confined es­
sentially to that molecule by short-range overlap repulsive 
forces due to electrons of other molecules. 

To account for this situation, an additional repulsive po­
tential has been introduced, which constrains the electrons to 
remain substantially inside the sphere, but without introducing 
any discontinuities into the wave function. One form for this 
potential that has been found convenient in the current studies 
is 

C = E p ) " (H) 

since this function remains small inside the sphere but rises 
rapidly outside. The value of n should be greater than any 
power of / required in Il in eq 6 so that, if the sum over / is 
terminated with / = m, then n » m. This "penalty function" 
(C) will then override the terms in Il (which have the form 
{ri/a)21), causing the electrons to be constrained to be essen­
tially inside the sphere. 

Another of the advantages of the model expressed by eq 6 
and 11 is its ease of incorporation into typical ab initio quantum 
mechanical studies. In particular, since Il is a sum over zero-, 
one-, and two-electron operators only, and since C is a sum only 
over one-electron operators, incorporation into the framework 
of Hartree-Fock theory is straightforward. To do this, one 
defines a modified Hamiltonian (Ji') by 

Ji' = Ji + V + C (12) 

where Ji is the usual free molecule Hamiltonian.2425 Then, 
an energy optimization using a self-consistent field approach 
on Ji' is employed to obtain the wave function for the solute 
in the presence of the bulk solvent. 

However, it is desirable that both of the mean values CK) 
and (C) should be monitored to insure that the constraint 
energy (C) remains much smaller than the solvation energy. 
Assuming that to be the case, the energy due to interaction of 
the solute with the solvent medium is given by: 

Es = E' - (C) -E (13) 

where E' is the energy associated with Ji' and E is the energy 
of the solute in the absence of the solvent, i.e., associated with 
Ji. 

It should be noted that the modified Hamiltonian Ji' con­
tains two parameters,«and "a". In principle, neither of these 
parameters need to be assigned arbitrarily. For example, if the 
sphere size is allowed to increase (with concomitant addition 
of appropriate numbers of explicit solvent molecules) until the 
potential exerted on the solute molecule is the same whether 
calculated using discrete solvent molecules or the continuum 
model, then use of the bulk dielectric constant for the solvent 
may be justifiable. In slightly greater detail, the static dielectric 
constant is appropriate for UQ since no dynamics are involved 
but, for the remaining terms, the instantaneous polarization 
of the solvent is required and the high frequency dielectric 
constant is appropriate. Also, the sphere radius that is appro­
priate for use is determinable, at least in principle, using this 
procedure. However, practical difficulties currently associated 
with treatment of large numbers of explicit solvent molecules 
may require arbitrary assignments of the sphere radius (with 
corresponding errors associated with the use of bulk values for 
the dielectric constant). 

Evaluation of Integrals 

The evaluation of integrals involved in Ji' are, as usual, 
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Table I. Effect of Constraint Function on Calculated Solvent 
Effect for the Case of Ethane in n-Hexane 

n 

8 
10 
12 
14 
16 

(E'-(C)) 
(E,) 

-67.37537 
-67.37538 
-67.37539 
-67.37539 
-67.37539 

Es, 
kcal/mol 

-17.0179 
-17.0242 
-17.0304 
-17.0304 
-17.0304 

simplified considerably if spherical Gaussian functions 
(FSGO) are used for the basis set. In particular, the basis or-
bitals (G1-) chosen for use are defined by 

G , = ^ e x p j - ( r - R , ) 2 M 2 ) (14) 

where N, is a normalization constant, p, is the "orbital radius" 
of the FSGO, and R, is the origin of the FSGO, relative to some 
arbitrary origin. 

The integrals that are required for calculation of ft', in 
addition to the usual integrals that arise, have the forms 

I = {GiiDlR^r^ Pm(cosda,)\Gj{l)) (15) 

1 I = ( C ( D I r 1 ^ I G 7 ( I ) ) (16) 

I I I= <G,(1)G*(2)| r1"r2»'/»#„(co8t>12)|G;(l)C,(2)> 
(17) 

The first integral (I) arises from the nuclear-electronic term 
in U, while the second integral (II) arises from the electron-
electron term when the electrons coincide and also from C if 
the power of n is taken as even. The third term (III) arises from 
the electron-electron term in U when the electrons are dif­
ferent. Defining 

A,7=(Py2R, + p,-2R;)/(p,.2 + P;2) (I8) 

S0=(GiIGj) (19) 

and t?a>iy to be the angle between Ra and Ay, and tfy,*/ to be 
the angle between Ay and Xu, then all of the required integrals 
are easily evaluated in closed form and are given by 

I = Sa-Ra
m Aijm Pm(cos$a.ij) (20) 

f/2w + l \ y(m + y2) 
11 '7IV 1 ) /3"T(V2) 

/2#« + l \ , T(w - V2) 
+ \ 3 rij /J-T(V2) 

+ (2m + l)AAT{m~3/2)+ + A-2-] (21) + V 5 ) A , J /3--T(V2) +---+A,J J {U) 

III = SuSkiAt^Ak,"' Pm(cos$,j,ki) (22) 

/3 = a, + ctj = (Pi2 + Pj2VPi2Pj2 (23) 

where (%) is the binomial coefficient, Ra
m and Ajjm are the 

moduli of Ra
m and Aym, respectively, and T(x) is the T 

function, defined as 

T(x) = C" f*-> e-'dt 

At this point, several computational aspects are of interest 
to note. In particular, integrals I and II are one-electron inte­
grals and thus give rise to only ~n2 integrals if n basis functions 
are used. Relative to the approximately n4 electron repulsion 
integrals in ft, the integrals arising from I and II do not add 
significantly to the total integral evaluation time and do not 
increase storage requirements at all. Integral III gives rise to 
~n4 integrals in much the same manner as for usual electron 
repulsion integrals. However, as indicated in eq 22, only overlap 

integrals are involved and evaluation of the modified error 
function (F0(x)) is not needed. Since these overlap integrals 
are also needed elsewhere in the calculations, reevaluation in 
this context is not needed. Also, since one of the primary factors 
in determining whether a usual electron repulsion integral is 
effectively zero is the overlap of orbitals, inclusion of integrals 
from III is not expected to change the number of nonzero in­
tegrals that need to be stored. Finally, each of I—III are com­
puted and added to appropriate integrals in ft during the in­
tegral evaluation stage and do not need to be altered later. 
Thus, I—III are not needed separately during the SCF stage. 
Thus, the net effect of inclusion of macroscopic electrostatic 
effects on the total SCF calculation is a small increase in total 
computational time and estimation of macroscopic electrostatic 
solvent effects for molecular systems approximately as large 
as possible for free molecules is expected to be relatively 
straightforward. 

Investigation of Prototype Systems 

In order to assess the characteristics of this model, several 
studies on prototype systems were carried out. So that these 
initial studies might be carried out on systems where the model 
is expected to be applicable without unnecessary complications, 
a series of hydrocarbons in nonpolar solvent have been chosen. 
In particular, the hydrocarbons methane, ethane, propane, and 
n-butane have been studied in a solvent of «-hexane. 

The Hartree-Fock SCF calculations for the isolated mole­
cules, as well as those in modified form for the molecules in a 
hexane solvent, have employed the ab initio molecular frag­
ment procedure,30 which is described in detail elsewhere.3132 

For each of the solute molecules studied here, the original 
FSGO basis that was determined in studies32 of CH4 was 
employed for each carbon atom environment to facilitate 
comparisons. The same basis was used in both the free mole­
cule and molecule-in-hexane studies. The dielectric constant 
for hexane was taken as 1.890, the static (bulk) value. The 
nuclear geometries used in these studies were taken from the 
electron diffraction studies of Kuchitsu33 and no geometric 
relaxation was allowed. 

The first study was designed to measure the effect of the 
sphere-constraining potential (C) on the electrostatic solvent 
effect. This study was carried out using ethane in hexane and 
the value of n in eq 11 was varied, but kept even for ease of 
integration. It was found in preliminary studies27 that inclusion 
of terms in eq 7 through It^ was sufficient to insure conver­
gence to a few tenths of a kilocalorie, which implies that values 
of n greater than 6 are needed in eq 11. The results for various 
choices of n > 6 are summarized in Table I. For these studies, 
the origin of the sphere was taken at the midpoint of the C-C 
bond in C2H6 and the radius of the sphere was taken as the 
distance from the origin to any of the hydrogen atoms plus 1.67 
times the van der Waals radius of H. Further discussion of the 
choice of sphere radius is given below. As is apparent from the 
data in the table, both the total energy of the solvated system 
(E' -(C)) and the electrostatic solvent energy (Es) are in­
sensitive to the value of n after n > 10 and they converge rap­
idly to constant values. Consequently, the value of n = 12 was 
chosen for all subsequent studies. 

Next, the effect of sphere radius choice was studied, again 
using the example of ethane in hexane. The results of these 
studies are summarized in Table II. The sphere radius was 
taken as the origin-to-hydrogen distance as before plus the van 
der Waals radius of H scaled by multiplication by the values 
of the scale factor. As is apparent from the data, there is a 
marked dependence of the solvent effect on the sphere radius 
choice. Since it was not possible in a practical manner to de­
termine the appropriate sphere radius by inclusion of sufficient 
explicit solvent molecules inside the sphere as described earlier, 
an arbitrary assignment was necessitated. In the remaining 
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Table II. Effect of Sphere Radius Choice on Calculated Solvent 
Effect for the Case of Ethane in n-Hexane 

AE 

alveole 

Scale 
factor 

1.0 
1.25 
1.5 
1.75 
2.0 
2.25 
2.5 

Radius 
(ao) 

5.1859 
5.7528 
6.3197 
6.8866 
7.4535 
8.0203 
8.5872 

(E'-(C)) 
(£a) 

-67.42673 
-67.39868 
-67.38267 
-67.37288 

67.36654 
-67.36224 
-67.35922 

£s, 
kcal/mol 

-49.24 
-31.65 
-21.60 
-15.45 
-11.47 
-8.78 
-6.88 

AE 

Kcals/foole 

16 

ETHANE 

Free Molecule 

9 0 A n g l e ol 1 M 

Rota t ion 

Figure 2. Electrostatic solvent effect on ethane rotational barrier. 

P R O P A N E (<t>2 = 6 0 ) AE 

Kca Is/mo Ie 

Free Molecule 

Solvent ef fect 

Figure 3. Electrostatic solvent effect on propane (02 = 60°). 

calculations, the sphere origin was taken as the center of mass 
of the solute molecule, and the radius was taken as the distance 
from the origin to the farthest atom plus twice the van der 
Waals radius of that atom. 

In order to investigate the effect of the hexane solvent on 
conformation, the series of molecules, CH4 , C2H6, C3H8 , and 
W-C4H]0, was studied, using the sphere radius and other choices 
discussed previously. The results of these studies are summa­
rized in Figure 2-6. In each case, the zero energy has been 

PROPANE 

" 3 C . 

Salver ' effect 

ogle of Relat ion 

Figure 4. Electrostatic solvent effect on propane (</>2 = 0°). 

B U T A N E ( t f , = 60, 4>3 = 6Q ) 

>~-C~JJ2 ,Jf-CH, 

270 

Angle of Rotat ion 

Figure 5. Electrostatic solvent effect on n-butane (0, = 60°, ^3 = 60°). 

taken as the minimum energy in the presence of hexane, and 
the zero angle of rotation is taken as the eclipsed position of 
hydrogen atoms on adjacent carbon atoms. Of particular in­
terest in these figures is the change in solvent effect (i.e., the 
"differential solvent effect") with conformation, which is 
shown as a dashed line in each figure. It is seen that, for ethane 
(Figure 2) and for the conformations of propane in which <j>2 

= 60° (Figure 3), there is no differential solvent effect. On the 
other hand, for propane with 0 = 0° (Figure 4) and for both 
butane cases studied (Figures 5 and 6), there is a noticeable 
differential solvent effect. 

To estimate the incremental solvent effect due to elongation 
of the hydrocarbon chain, we note that the solvent effect for 
CH 4 is calculated to be -8 .4 kcal/mol, and from Figures 2-6 
it can be seen that the solvent effect for ethane is —11.5 kcal/ 
mol, for C3H8 it is in the range -10 .9 to -12.1 kcal/mol (de­
pending upon conformation), and for M-(C4H]0 it is in the 
range —10.1 to —11.5 kcal/mol. After appropriate averaging 
over different conformations, it is expected that the incre­
mental effect of adding additional CH2 groups will be quite 
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B U T A N E (Ip1 = 6 0 , I)I3 = o ) 

Figure 6. Electrostatic solvent effect on /!-butane (rp\ = 60°, </>3 = 0°). 

small. This is in qualitative agreement with a incremental free 
energy change of -0.849 kcal/mol observed experimentally34 

for hydrocarbons in a hexane solvent. 

Discussion 

The model and examples described above indicate that it is 
possible to formulate a satisfactorily general quantum me­
chanical model for macroscopic electrostatic effects that is also 
computationally tractable and convenient. In order to illustrate 
the connection to other approaches, as well as to point out other 
characteristics of the model, several additional comments are 
appropriate. 

First, the generality of the model is clear, since terms cor­
responding to all multipole effects are included, at least in 
principle, in eq 6. Since most existing models include at most 
dipole effects, and since higher order terms have been found, 
at least in these initial studies, to be nonnegligible, such gen­
erality of the model seems quite advantageous. Also, even if 
terms only up to and including dipole effects are included, there 
are significant differences from dipole models that are typically 
used. In particular, the use of the operator form of /x in /x2 gives 
rise to new terms of the /•,2 type that are not present in a clas­
sical point dipole model. This means that Ii\ may give rise to 
a nonzero contribution to the solvent effect, even if the solute 
does not contain a permanent dipole moment. Such an effect 
occurred in the initial studies27 of He in CCU. This suggests 
that the quantum mechanical dipole term also includes some 
interactions of the van der Waals type.35 

As seen in the studies of prototype systems, one of the main 
difficulties of this model is the a priori assignment of sphere 
radius. While it is possible in principle to use criteria like the 
equality of the calculated potential at points within the solute 
using a microscopic or macroscopic description of the solvent, 
the practical application of such ideas is not generally feasible 
at present. This difficulty is further exacerbated by the strong 
dependence of the calculated solvent effect on sphere radius 
choice. Hence, while the choice of the distance of the farthest 
atom from the origin plus twice the van der Waals radius may 
be a convenient choice that gives rise to reasonable values of 
the calculated solvent effect, the arbitrariness of such a choice 
remains, and comparisons of calculated data with experimental 
data other than trends is not appropriate without extreme care. 
Of course, use of appropriate statistical mechanical con­

cepts8'11 in addition are necessary for comparison to experi­
mental data. 

Some of the difficulties in choice of C and sphere radius can, 
however, be rationalized by reference to a more detailed mi­
croscopic model of the solvent. In particular, the form of the 
penalty function C can be related to the form of the overlap 
repulsions from the solvent molecules, since these determine 
the localization of the electrons on the solute. A typical form 
for this repulsive potential is 

V=A(r-a)-]2 

where A is a constant, r is the distance from the center of the 
solute sphere, and a is the distance from this center to the nu­
cleus of the nearest solvent atom. While this cannot be fitted 
exactly by a potential of the form of C, it can be fitted ap­
proximately in any appropriate region. The significant region 
will be the neighborhood of r — a — v, where v is the van der 
Waals radius of the solvent atom or molecule, since this is 
where the repulsion begins to be effective. To fit the steep rise 
of the potential, the derivatives are equated at r = a — v, 
i.e., 

/j_d_K\ = /J_dC\ 
\Vdr)r=a-V \CdrJr-a-v 

This yields, for the exponent n in C, 

« - 1 2 ( ( l / i > ) - ( l / a ) ) 

Thus, the choice of n = 12 for a cavity radius choice such that 
a » v and i; ~ 1 is directly rationalized. Since this a/v rela­
tionship will typically be the case, the contraint energy ((C)) 
can be interpreted as being proportional to the overlap repul­
sion effect of the solute electrons with the solvent. 

In addition, while precise assignment of the cavity radius 
has the difficulties mentioned above, estimation of reasonably 
narrow limits for the cavity radius can be found relatively 
easily. In particular, the distance from the origin to the farthest 
nucleus plus the van der Waals radius of that atom is the lowest 
possible limit. Also, the largest possible sphere radius is this 
distance plus the van der Waals radius of the nearest solvent 
atom. From the form of the penalty function used, it is expected 
that the optimum choice will be closer to the larger value. 

It should also be noted that the magnitude of the stabiliza­
tion energy may also be affected by the choice of sphere radius 
and other factors. In particular, since the contributions to %l 
are proportional to inverse powers of the sphere radius, more 
folded conformations (with a smaller sphere radius) will ex­
perience larger effects. However, since the differential effects 
observed here (e.g., in butane) stabilize extended conformers 
instead of folded ones, these effects do not appear to be due 
simply to the change in sphere radius associated with the 
change in conformation. As to the magnitude of the stabili­
zation energy found, it would appear to be exaggerated. This 
may be due to the fact that no individual solvent molecules 
were included within the sphere. Alternatively, the use of small 
basis sets may also be expected to overemphasize the calculated 
stabilization energy. Clearly, additional studies with explicit 
introduction of solvent molecules must be carried out, along 
with basis set extension studies, before this particular point can 
be resolved. 

Finally, it is of interest to examine how one might incorpo­
rate such a model into a semiempirical formalism. As an ex­
ample of such an analysis inclusion of eq 6 and 11 and analysis 
of the assumptions leading to the CNDO/2 SCF equations36 

result in a change in the form of the Fock matrix elements 
from 

F^ = Um + (PAA - '/2^VM)TAA 

+ E (^BBTAB - ZBTAB) (24) 
B(^A) 
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F^ = PAB°S^ - 1AJVyAB G***) (25) 

to 

^7MM' ~~ ^ V + (̂ AA — '/^V) 

x t - ^ 5 ^ ^ C-̂ ) W-] 
+ V fP 7 J - v 1 v ( / + I ) ( I - Q 
+ 2, (Ĵ BB - Z8) TAB + L ,, , . , — ~ r 

B(̂ A) L /=0 ( /+ 1) « + / 
fesr)w>] (26) 

and 

FJ = (/?AB°)'SV„ - £/»„ 

where 

/ / 0 M d ) *•> (IWr2
1Pi(COs $n)<t>\ (2)0, (I)ATXAT2 

= 7 A B ( % A . (28) 

and $M,</>„ are on atom A and #\,<£o- are atom B. The U1111' and 
(/SAB0)' term will contain, in addition to the usual CNDO 
terms, the contributions from C. 

Hence, it is seen that the effect of the solvent arises both in 
one- and two-electron terms (through UJ, (/3AB0)' and the 
terms in 7AB ( / ))- However, the dependence of the model on the 
sphere constraining terms is now implicit in UJ and is no 
longer explicitly revealed in the model. In addition, methods 
of evaluation of UJ, (,SAB0)', and 7ABU> must be devised by 
comparison with available experimental data before use is 
possible. Nevertheless, the applicability of the model within 
a semiempirical framework is clear. 

Further characterization of the model (e.g., basis set de­
pendence), as well as application to problems of chemical and 
biological interest, is underway and will be reported at a later 
date. 
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